Magnetoresistive Biosensors for Quantitative Proteomics

Prof. Drew Hall (<u>drewhall@ucsd.edu</u>)

Biosensors and Bioelectronics Group Web: <u>http://BioEE.ucsd.edu</u> University of California, San Diego

UCSD | School of Jacobs | Engineering

CMOS Emerging Technologies Research Symposium, 2014

Applications of Biosensors

Clinical Diagnostics

- Disease detection
 - HIV/AIDS
 - Cancer
 - Cardiovascular (heart) disease
- Therapy progression

Biomedical Research

- Drug discovery
- Kinetics of protein interactions

Environmental Testing

- Water pollution
- Food contamination
- Toxins

Concept

Outline

- Motivation and Applications
- Magnetic Biosensing
 - Background
 - High throughput readout
 - Temperature correction technique
- CMOS Biosensor Microarray
 - Circuit and system design
 - Measurement results
- Conclusion

Giant Magnetoresistive Spin-Valves (GMR SV)

The GMR SV as a Biosensor

Sensor Noise Spectrum

Signal Modulation Scheme

- Modulate the signal from magnetic nanotags away from 1/f noise of sensor and interface electronics
- Electrical excitation and magnetic field modulated

High Throughput Readout

- Techniques used to reduce readout time
 - Parallelized "column" readout
 - Frequency division multiplexing (FDM)
 - Time division multiplexing (TDM)

4x8x8 GMR SV Array

Two Tone Example

Temperature Correction

- Use the carrier tone to measure relative temperature change
- Corrected side tone $\Delta ST - \kappa \cdot CT$
- κ is a predetermined ratio of the TC_{MR}/TC_R

Outline

- Motivation and Applications
- Magnetic Biosensing
 - Background
 - High throughput readout
 - Temperature correction technique

CMOS Biosensor Microarray

- Circuit and system design
- Measurement results
- Conclusion

System Architecture

Carrier Suppression

Analog Front-End

- Sensor interface requirements
 - Single ended input
 - Fixed input potential
 - High linearity
 - Isolation from ADC kickback

Performance Summary

Entire Chip	Technology:	0.18 µm (2P / 6M)	
	V _{ddA} / V _{dd} / V _{ddD} :	2.0 V / 2.1 V / 1.8 V	
	Readout Columns:	16	
	Area:	2.7 mm x 2.7 mm	
	Power Consumption:	55.8 mW	
Front-End	Gain:	17.5 kΩ (84.9 dBΩ)	
	Input Referred Spot Noise:	120 pA/√Hz (58 nT/√Hz)	
	w\ sensors:	160 pA/∫Hz (78 nT/∫Hz)	
	Power Consumption:	19.8 mW (36 %)	
ADC	Sampling Frequency:	10 MHz	
	Oversampling Ratio:	500	
	Dynamic Range:	84 dB	
Sensors	# Sensors:	256	
	Readout Time:	4 s	
	Resistance / MR ratio:	1.5 kΩ / 11 %	

Sensor Die

Temperature Correction

Temperature Correction

Proteomic Measurement Results

Clinical Ovarian Cancer Data

Summary

- Demonstrated a scalable CMOS integrated biosensing platform based on GMR SV sensors and magnetic nanotags
 - Fully quantitative and highly sensitive
 - Large sensor array with multiplex detection
 - Rapid real-time readout
 - Carrier referenced temperature correction scheme

Acknowledgements

National Semiconductor

Richard S. Gaster Harvard Med.

Kofi Makinwa TU Delft

Shan X. Wang Stanford

Boris Murmann Stanford